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An unconstrained minimax algorithm of Charalambous and Conn is easily modified to solve
the constrained case. Here we present some numerical results and find that this algorithm
compares favourably to those of Dutta and Vidyasagar.
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1. Introduction

In “New algorithms for constrained minimax optimization” [4] two algorithms
for solving the constrained minimax problem are presented, along with numeri-
cal results. The method of Charalambous and Conn [1], [2] is mentioned in the
context of unconstrained minimax problems, and, as is pointed out by them, it is
easy to adapt their method to the constrained case. To see this, consider the
problem

minimize F(x)= mezilx fi(x), 1)
i

where I ={1, ..., m} is a finite set of integers. The approach suggested in [1], [2]
is based on the nonlinear programming formulation of (1):

minimize z,

. . (2)
subjectto z—fi(x)=0, iE€L

Feasible descent directions for z are generated by projecting (—1,0, ..., 0) onto
the space orthogonal to the gradients of active constraints of (2). In view of (2),
the constrained minimax problem can be written as

minimize z,

z—filx)=0, i€l
gi(x)=0, je,
h(x)=0, IEL,
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where J and L are finite sets of integers. (3) is a nonlinear programming problem
and can be solved in a manner similar to that suggested by Conn and Pietryz-
kowski [3]. To determine a descent direction for (3), we use the penalty function

p(x,u)=p-z- ; min(0, gj(x)) — ; [y (x)], (4)

thus generating first-order descent directions in the space orthogonal to the
gradients of active constraints of (3). We then use this direction as in [1] and [2].

This approach was tried by the author, and subsequent numerical results are
listed below. The runs for the first example were performed on the Honeywell
6060, in double precision, whilst the other runs were done on the IBM 370, in
double precision. Wherever possible, comparisons are made with the algorithms
of Dutta and Vidyasagar. (These algorithms will be denoted by DV1 and DV?2).
For the penalty function approach of Charalambous and Conn, two parameters,
w1 and €, must be initialized. These settings will be listed.

2. Numerical results and comparisons

Example 1. The problem is to minimize the maximum of
fi=xi+x3, 2= Q- x)"+(2—x)%,
3= 2 exp(—x; + xy),
subject to the constraints,
X1+ x=2, —x3—-x%3+225=0.

This example is tried with 9 different starting points. The parameters u and e,
are initialized to 0.1 and 0.01 respectively, in each case (see Table 1). The final
values as determined by the algorithm of C & C are

x;=1.35355, x,=0.646447, F =2.25000.

Table 1

Number of function evaluations
Starting point c&cC DV1 DV2
(0.5,0.5) 14 89 37
2,2) 15 87 35
(2.1,1.9) 9
(1.9,2.1)® 23
4,2) 8
2,47 9
(—4,-5) 13
(-5,—-4)* 19
(10, —8) 9

*In these cases, convergence was to the local
optimum (0.646447, 1.35355), where F = 4.05623.
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Example 2. This is the 3-section transmission line problem, as described in [4],
subject to the constraint

zZ1+2,+23—10=0.

This example was run with the starting points (see Table 2).
1 z=1.5,2,=3.0,23=6.0,1,=08, L=12, ;= 0.8, and
(2) z;=1.0, z,=3.16228, z3=10.0, [, = 1.0, ,=1.0, I = 1.0.

The parameter u was initialized to unity in all cases.

Table 2

. Number of function evaluations
Starting point C&C(e=001) C&C(e=0.001) DVi1 DV2

1 , 82 55 145 78
2 48 65 150 73

Final values achieved by the algorithm of Charalambous and Conn are

z;=1.5113, z,=2.8859, z3=5.6028,
I, = l,= 1= 1.0000, F = 0.20475.

Example 3. This is the 3-section transmission line problem, subject to the
constraints
0=z=<S5, i=1,2,3.

The two starting points of Example 2 are used again here, and u is initialized
to unity (see Table 3).

Table 3

Number of function evaluations
Starting point C & C (e =0.01) C & C(e=0.001) DVI DV2

1 21 33 146 96
2 99 54 149 95

Final values achieved by the algorithms of Charalambous and Conn are

z, = 1.3825, z, = 2.6295, z3 = 5.0000,
I, = I, = 1= 1.0000, F =0.23056.

3. Conclusions

These results indicate that the algorithm of Charalambous and Conn, extended
to handle constraints, is competitive with the algorithms of Dutta and Vidy-
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asagar. It also appears that the solution generated by the former algorithm is
more accurate than the solution produced by the latter. For example, if we
determine the minimax value using the 4-decimal solution given by Charalam-
bous and Conn, in Example 3, we have that F = 0.23057. Using the 4-decimal
solution given by Dutta and Vidyasagar in [4], results in F = 0.23064. This better
accuracy probably stems from the fact that ¢, (in the notation of Dutta and
Vidyasagar), is a parameter that does not reflect the true minimax value, except
in the limit. In [1], however, z is always the true minimax value.

Housekeeping expense comparisons are difficult to make with any accuracy. A
few general remarks are in order here, however. The minimization of (4) has a
work-per-iteration cost comparable to that involved in a step of the minimization
of the smooth objective function of Dutta and Vidyasagar. In each case a
descent direction for the respective objective functions must be found, and then
a line ‘minimization’ must be performed. To determine a descent direction for
(4), we must formulate a projection matrix, using the gradients of active
constraints/functions. Finding a descent direction for the objective function of
Dutta and Vidyasagar involves evaluating the gradients of some of the con-
straints/functions and formulating and updating a matrix approximating the
Hessian. A specialized line search is used to minimize (4) along a line, to take
advantage of the derivative discontinuities, as was done by Charalambous and
Conn in [2]. The order of work is equivalent to that of the more usual type of
line search used for smooth functions. Note, however, that the objective
function (4) is no more costly to evaluate than the original functions/constraints.
Most smooth approaches have an objective function of increased complexity. In
[4], for example, the terms are squared.

The actual implementation will, of course, affect the overhead costs. If one
chooses a numerically stable implementation, as was done here, a little is lost in
terms of work-per-iteration in order to gain numerical accuracy and trust-
worthiness.
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